Вещества простые и сложные. Химические элементы. Аллотропия. Химические соединения и смеси Что такое сложное вещество в химии

Большинство химических реакций, протекающих в окружающем нас мире и используемых в промышленности, являются сложными. В зависимости от механизма они подразделяются на обратимые ,параллельные ,последовательные ,сопряжённые ,цепные .

К обратимым относятся реакции, которые при данных условиях могут самопроизвольно протекать как в прямом, так и в обратном направлении. В общем виде химическое уравнение обратимой реакции записывается следующим образом:

аА + bB+ … ↔cC+dD+ …,

где а, b , с, d , …. – стехиометрические коэффициенты перед формулами исходных (А, В, ….) и конечных (С, D , …) веществ.

Примером обратимого процесса, протекающего в живых организмах, может служить реакция этерификации:

R 1 – COOH + HO – R 2 ↔ R 1 – С(O)O – R 2 + H 2 O,

а используемого в промышленности – синтез аммиака из азота и водорода:

3 Н 2 +N 2 ↔ 2NH 3

C корость обратимой реакции равна разности между скоростями прямой и обратной реакций.

Параллельными реакциями называются реакции вида:

т.е., при которых одни и те же исходные вещества, одновременно реагируя между собой, образуют разные продукты.

Примером подобного типа реакций является реакция разложения бертолетовой соли KClO 3 , способная протекать при определённых условиях в двух направлениях

Параллельно по двум и более механизмам может протекать распад ядер атомов некоторых радиоактивных элементов. Особенно часто параллельные реакции встречаются в органической химии. Например, при сульфировании толуола серной кислотой могут одновременно образоваться орто- и парасульфопроизводные:

В некоторых случаях параллельными могут быть и биохимические реакции, протекающие в клетках живых организмов. Например, ферментативное брожение глюкозы:

1) С 6 H 12 O 6
2 С 2 H 5 OH+ 2CO 2

спиртовое брожение

2) С 6 H 12 O 6
СH 3 – CH(OH) – COOH

молочнокислое брожение

При определённых условиях многие параллельные реакции могут протекать преимущественно только в каком-нибудь одном направлении.

Скорость параллельной реакции определяется скоростью наиболее быстрой её стадии.

Последовательными называются такие реакции, в которых образование конечного продукта из исходных веществ происходит не непосредственно, а обязательно через ряд промежуточных стадий, протекающих одна за другой в строго определённой последовательности. Схематически такой процесс можно изобразить следующим образом:

А → В → С → D,

где каждой буквой обозначается отдельная стадия процесса. В общем случае число таких стадий в последовательных реакциях может быть самым разным (от нескольких единиц до нескольких десятков). Причём каждая из стадий, в свою очередь, не обязательно является простой моно- или бимолекулярной реакцией, но может быть и сложной.

Последовательные реакции распространены в природе и особенно часто они наблюдаются в биохимических процессах, протекающих в живых организмах, растениях. В качестве примера таких реакций можно привести фотосинтез и биологическое окисление глюкозы, гидролиз олиго- и полисахаридов и т.д.

Расчёт кинетики последовательных реакций сложен и достаточно точно может быть осуществлён лишь для сравнительно простых процессов, состоящих из небольшого числа стадий.

Однако, если одна из стадий последовательной реакции обладает значительно меньшей скоростью, чем все остальные, то общая скорость реакции будет определяться скоростью именно этой стадии, которая в данном случае называется лимитирующей .

Например, реакция хлорирования оксида азота (II)

2NO+Cl 2 = 2NOCl

состоит из двух стадий:

1) NO + Cl 2 = NOCl 2 ;

2) NOCl 2 + NO = 2NOCl

Первая стадия протекает быстро с образованием нестойкого продукта NOCl 2 . Вторая стадия является медленной и лимитирующей. Скорость всей реакции описывается кинетическим уравнением

= k
·C NO

и общий порядок данной реакции равен 2.

Сопряжёнными называют реакции, протекающие по следующей схеме:

Одна из этих реакций может протекать самостоятельно, а вторая реакция осуществима только в присутствии первой. Таким образом, протекание одной реакции инициирует осуществление второй.

Сопряжённые реакции возможны в биохимии. Они протекают в клетках, причём энергию, необходимую для течения второй реакции с ΔG 2 > 0, доставляет первая реакция, для которой ΔG 1 < 0. Причём │ΔG 1 │> │ΔG 2 │, т.е. весь процесс в целом протекает с уменьшением энергии Гиббса. Подобные биохимические реакции иначе называютсятандемными .

Часто механизм сопряжённых реакций заключается в образовании на первой стадии активных промежуточных частиц (радикалов или ионов), которые инициируют протекание всех остальных реакций.

Схему сопряженных реакций такого типа можно в общем виде представить следующим образом:

где С – активная промежуточная частица.

Например, бензол в водном растворе не окисляется Н 2 О 2 , но при добавлении соли двухвалентного железа происходит его превращение в фенол и дифенил. Чтобы «запустить данный процесс, ионыFe 2+ сперва вступают во взаимодействие с Н 2 О 2 , образуя радикалы · ОН

Fe 2+ + H 2 O 2 → Fe 3+ + OH – + ˙ OH,

которые затем реагируют как с бензолом

С 6 Н 6 +˙ ОН →˙ С 6 Н 5 + Н 2 О

˙ С 6 Н 5 +˙ ОН → С 6 Н 5 ОН

так и с Fe 2+

Fe 2+ +˙ OH→Fe 3+ +OH –

Явление химической индукции впервые было исследовано Н.А. Шиловым в 1905 г.

Цепными называют химические реакции, протекающие через ряд регулярно повторяющихся элементарных стадий с участием активных частиц, содержащих в своём составе атомы с неспаренными электронами на внешнем энергетическом уровне (или по другому – свободных радикалов).

К цепным относятся реакции горения, полимеризации и поликонденсации, распада ядер и др.

Механизм цепных реакций состоит в том, что свободные радикалы (часто в их роли выступают одиночные атомы) обладают высокой химической активностью. Они легко вступают во взаимодействие с устойчивыми молекулами и превращают их в активные частицы, которые затем образуют продукты реакции и новые радикалы, и таким образом возникает цепь дальнейших стадий. Цепная реакция продолжается, пока не прореагирует всё вещество, или пока не исчезнут активные частицы-радикалы.

Для цепных реакций характерны три этапа: 1) зарождение цепи ; 2)развитие цепи или её рост ; 3)обрыв цепи .

Зарождение цепи начинается с элементарного химического акта, в результате которого образуется активная частица. Этот процесс требует затраты энергии и может идти при нагревании вещества, воздействии ионизирующего излучения, действии катализатора.

Например, в реакции синтеза хлороводорода и водорода и хлора, протекающей по цепному механизму (Н 2 +Cl 2 = 2HCl), возникновению цепи соответствует процесс

Cl 2 2 Сl

Развитие цепи представляет собой периодическое повторение стадий реакции с участием образовавшихся радикалов. Они иначе называются звеньями цепи:

Н 2 + · Cl→HCl+˙ H

˙ H+Cl 2 →HCl+˙ Cl

H 2 +˙ Cl→HCl+˙ H

Cl 2 +˙ H→HCl+˙ Clи т.д.

Длина цепи определяется числом молекул исходного вещества, прореагировавшего в результате одного акта зарождения цепи, до её обрыва.

По особенностям стадии развития цепные реакции делят на неразветвлённые иразветвлённые . В первом случае количество свободных активных частиц-радикалов остаётся неизменным на протяжении всего данного этапа.

В разветвлённых цепных реакциях расход одной активной частицы приводит к образованию нескольких (двух или более) других активных частиц. Схематически это можно представить следующим образом:

Обрыв цепи соответствует исчезновению активных частиц в результате их взаимодействия друг с другом:

˙ H+˙ H=H 2

˙ Cl+˙ Cl=Cl 2 обрыв цепи

˙ H+˙ Cl=HCl

Кроме того, он может происходить при адсорбции частиц стенками сосуда, при столкновении двух активных частиц с третьей (называемой ингибитором), которой активные частицы отдают избыточную энергию. Поэтому для цепных реакций характерны зависимость их скорости от размеров, формы и материала реакционного сосуда, от наличия посторонних инертных веществ, выполняющих роль ингибитора.

Скорость неразветвлённых цепных реакций определяется скоростью наиболее медленной стадии, т.е. зарождением цепи. Для каждой стадии в реакциях данного типа используются обычные уравнения химической кинетики (первого или второго порядка).

Разветвлённые химические реакции могут протекать по сложному кинетическому закону и не иметь определённого порядка. «Размножение» радикалов в них часто приводит к лавинообразному течению процесса, которое вызывает взрыв. Однако и в этих реакциях возможен обрыв цепи. Поэтому бурное увеличение скорости процесса (вплоть до взрыва) происходит в том случае, если темп разветвления цепи опрежает темп её обрыва. Теория цепных реакций была разработана в трудах академика Н.Н. Семёнова, С.Н. Хиншельвуда (Англия) и др. учёных.

Существуют цепные реакции, в которых в роли активных частиц выступают не радикалы, а ионы, образующиеся в результате гетеролитического разрыва химической связи:

А : В → А ˉ : + В +

Подобный механизм на практике часто реализуется в реакциях полимеризации непредельных органических соединений.

Все вещества делятся на простые и сложные.

Простые вещества - это вещества, которые состоят из атомов одного элемента.

В некоторых простых веществах атомы одного элемента соединяются друг с другом и образуют молекулы. Такие простые вещества имеют молекулярное строение . К ним относятся: , . Все эти вещества состоят из двухатомных молекул. (Обратите внимание, что названия простых веществ совпадают с названиями элементов!)

Другие простые вещества имеют атомное строение , т. е. состоят из атомов, между которыми существуют определенные связи. Примерами таких простых веществ являются все ( , и т. д.) и некоторые ( , и др.). Не только названия, но и формулы этих простых веществ совпадают с символами элементов.

Существует также группа простых веществ, которые называются . К ним относятся: гелий Не, неон Ne, аргон Аr, криптон Kr, ксенон Хе, радон Rn. Эти простые вещества состоят из не связанных друг с другом атомов.

Каждый элемент образует как минимум одно простое вещество. Некоторые элементы могут образовывать не одно, а два или несколько простых веществ. Это явление называется аллотропией.

Аллотропия - это явление образования нескольких простых веществ одним элементом.

Разные простые вещества, которые образуются одним и тем же химическим элементом, называются аллотропными видоизменениями (модификациями).

Аллотропные модификации могут отличаться друг от друга составом молекул. Например, элемент кислород образует два простых вещества. Одно из них состоит из двухатомных молекул О 2 и имеет такое же название, как и элемент- . Другое простое вещество состоит из трехатомных молекул О 3 и имеет собственное название - озон.

Кислород О 2 и озон О 3 имеют различные физические и химические свойства.

Аллотропные модификации могут представлять собой твердые вещества, которые имеют различное строение кристаллов. Примером являются аллотропные модификации углерода С - алмаз и графит.

Число известных простых веществ (примерно 400) значительно больше, чем число химических элементов, так как многие элементы могут образовывать две или несколько аллотропных модификаций.

Сложные вещества - это вещества, которые состоят из атомов разных элементов.

Примеры сложных веществ: НCl, Н 2 O, NaCl, СО 2 , H 2 SO 4 и т. д.

Сложные вещества часто называют химическими соединениями. В химических соединениях свойства простых веществ, из которых образуются эти соединения, не сохраняются. Свойства сложного вещества отличаются от свойств простых веществ, из которых оно образуется.

Например, хлорид натрия NaCl может образоваться из простых веществ - металлического натрия Na и газообразного хлора Сl Физические и химические свойства NaCl отличаются от свойств Na и Cl 2 .

В природе, как правило, встречаются не чистые вещества, а смеси веществ. В практической деятельности мы также обычно используем смеси веществ. Любая смесь состоит из двух или большего числа веществ, которые называются компонентами смеси .

Например, воздух представляет собой смесь нескольких газообразных веществ: кислорода О 2 (21 % по объему), (78%), и др. Смесями являются растворы многих веществ, сплавы некоторых металлов и т. д.

Смеси веществ бывают гомогенными (однородными) и гетерогенными (неоднородными).

Гомогенные смеси - это смеси, в которых между компонентами нет поверхности раздела.

Гомогенными являются смеси газов (в частности, воздух), жидкие растворы (например, раствор сахара в воде).

Гетерогенные смеси - это смеси, в которых компоненты разделяются поверхностью раздела.

К гетерогенным относятся смеси твердых веществ (песок + порошок мела), смеси нерастворимых друг в друге жидкостей (вода + масло), смеси жидкостей и нерастворимых в нем твердых веществ (вода + мел).

Важнейшие отличия смесей от химических соединений:

  1. В смесях свойства отдельных веществ (компонентов) сохраняются.
  2. Состав смесей не является постоянным.

Международный коллектив ученых синтезировал и исследовал гексакарбонил сиборгия , Sg(CO) 6 , - соединение нестабильного элемента с атомным номером 106 с монооксидом углерода , - а также сравнил его с аналогичными соединениями нестабильных изотопов молибдена и вольфрама, гомологов сиборгия. Это самое сложное экспериментально полученное химическое соединение, в состав которого входит трансактиноид, то есть элемент с атомным номером выше 103. В химических свойствах трансактиноидов наиболее сильно проступают эффекты теории относительности для внутренних электронов, поэтому изучение химии трансактиноидов позволяет уточнить всю теорию расчета электронной структуры тяжелых атомов.

Периодическая система химических элементов заполнена уже вплоть до номера 118 (рис. 1). Вся ее структура отражает периодичность химических свойств элементов с ростом атомного номера, которая возникает при постепенном заполнении электронных оболочек. Если два химических элемента различаются количеством полностью заполненных внутренних электронных оболочек, но имеют схожие внешние электроны - а именно они отвечают за химическую связь, - то эти два элемента должны обладать похожими химическими свойствами. Эти серии элементов называются гомологами друг друга и в периодической системе они располагаются в одной группе, друг над другом. Например, переходные металлы, образующие шестую группу, - хром, молибден, вольфрам и сверхтяжелый элемент с номером 106 сиборгий - являются гомологами друг друга. Если химические свойства первых трех из них известны давно, то химия сиборгия только начинает изучаться. Однако на основе периодической системы можно ожидать, что их химические свойства будут схожими.

При сравнении химических свойств элементов-гомологов есть один важный подводный камень. В тяжелых атомах внутренние электроны движутся уже с околосветовыми скоростями, и из-за этого эффекты теории относительности работают на полную катушку. Они приводят к дополнительному сжатию s- и p-орбиталей и, как следствие, к некоторому расширению внешних электронных облаков. Большой заряд ядра также усиливает эффекты взаимодействия электронов друг с другом, например спин-орбитальное расщепление. Всё это влияет на химическую связь тяжелого атома с теми или иными соседями. И все эти эффекты современная теоретическая химия должна уметь грамотно рассчитывать.

Релятивистские эффекты тем сильнее, чем тяжелее атом. Кажется естественным для проверки теоретических расчетов использовать самые тяжелые из известных элементов - трансактиноиды , элементы с атомным номером выше 103 (рис. 1). Однако на пути к их экспериментальному изучению встают сразу несколько существенных трудностей.

Во-первых, атомные ядра элементов-трансактиноидов очень нестабильны; их типичные времена жизни составляют минуты, секунды или даже доли секунды. Поэтому ни о каком накоплении макроскопического количества вещества речи не идет, работать приходится с отдельными атомами сразу после их рождения.

Это не было бы большой проблемой, если бы не вторая трудность: эти атомы удается получать лишь в штучных количествах . Синтезируются сверхтяжелые атомы в ядерных реакциях, в процессе слияния двух других достаточно тяжелых атомов с большим содержанием нейтронов. Для этого пучок тяжелых ионов одного сорта направляется на мишень, содержащую тяжелые атомы другого сорта, и при их столкновении происходят ядерные реакции. В подавляющем большинстве случаев они порождают лишь осколки поменьше, и только изредка получается так, что в слиянии двух ядер рождается нужное сверхтяжелое ядро. В результате темп рождения сверхтяжелых ядер при непрерывном облучении мишени оказывается смехотворно малым: порядка одной штуки в минуту, в час, в день или даже в неделю.

Такая технология рождения приводит и к третьей проблеме. Синтез сверхтяжелых атомов протекает в условиях постоянной жесткой радиации пучка, бьющего по мишени, и, как следствие, в присутствии огромного потока посторонних ядерных обломков. Даже если нужное ядро родится, наберет на себя электроны из окружающей среды, станет настоящим атомом и, наконец, сразу за мишенью вступит в химическую реакцию с образованием нового соединения - это соединение будет находиться в радиационно суровых условиях, в постоянном контакте с плазмой, вызванной жесткой ионизацией. То, что в этих условиях вообще можно изучать какую-то химию трансактиноидов вплоть до флеровия (элемента 114) - уже само по себе большое достижение. Однако до сих пор все химические соединения с участием трансактиноидов были очень простыми с химической точки зрения - галогениды, оксиды, и другие подобные соединения с тяжелым атомом в максимальной степени окисления. Более хрупкие химические соединения с нетривиальной химической связью быстро разрушаются в присутствии жесткой радиации. И это всё, увы, затрудняет проверку химических свойств трансактиноидов.

На днях в журнале Science была опубликована , знаменующая собой начало «нетривиальной» химии трансактиноидов. В ней сообщается о синтезе и экспериментальном изучении соединения Sg(CO) 6 , гексакарбонила сиборгия (рис. 2). Более того, в той же самой установке и теми же самыми методами были исследованы и гексакарбонильные комплексы элементов-гомологов сиборгия, Mo(CO) 6 и W(CO) 6 , причем для них тоже использовались короткоживущие изотопы молибдена и вольфрама с периодом полураспада в несколько секунд или минут.

Главная изюминка этой работы - это комбинированная экспериментальная установка, в которой сведены воедино несколько технических достижений последнего десятилетия. Эта установка преодолевает третью из упомянутых выше проблем - она пространственно разносит область синтеза сверхтяжелых ядер и область физико-химического исследования полученного соединения. Ее общий вид показан на рис. 3. На входе в установку (справа налево на заднем плане рисунка) пучок ядер взаимодействует с мишенью и порождает «коктейль» из вторичных ядер. Продукты реакции отклоняются дипольным магнитном (элемент D на рисунке), причем по-разному для разного соотношения заряда и массы ядер. Величина магнитного поля рассчитана таким образом, чтобы дальше, через систему магнитных линз (Q), проходили только исследуемые ядра, а фоновые ядра и исходный пучок отклонялись прочь. По сути, эта методика повторяет широко известную масс-спектрометрию в применении к ядрам.

На следующем этапе выделенные ядра (Sg, Mo или W) попадают в камеру RTC, сквозь которую продувается газовая смесь гелия и моноксида углерода. Важный момент: на пути в камеру ядра проходят сквозь окошко строго определенной толщины, изготовленное из майлара . Оно гасит кинетическую энергию горячих ядер и позволяет им термализоваться (замедлиться до энергии теплового движения молекул) внутри газовой камеры. Там ядра «одеваются электронами» и, вступая в химическую реакцию с моноксидом углерода, образуют соединение - карбонильный комплекс. Поскольку соединение является летучим, оно переносится со всем газовым потоком по 10-метровому тефлоновому капилляру ко второй части установки - специальному анализатору COMPACT.

Название COMPACT расшифровывается как Cryo-Online Multidetector for Physics and Chemistry of Transactinoids . Эта установка представляет собой целую линейку из 32 пар полупроводниковых детекторов для газовой термохроматографии соединений нестабильных элементов. Вдоль линейки создан сильный градиент температуры: каждая пара детекторов находится при своей температуре, от +30°C в начале линейки до −120°C в ее конце. Каждый детектор способен регистрировать α и β-частицы, вылетающие из ядер при их распаде, и с высокой точностью измерять их энергию и время вылета. Это необходимо для того, чтобы идентифицировать ядра сиборгия по их характерной цепочке распадов, в которых одна за другой вылетают альфа-частицы определенных энергий, и не спутать эти редкие события с фоновыми процессами.

Работа анализатора COMPACT выглядит так. Когда газовая смесь продувается сквозь линейку, молекулы карбонильного комплекса тяжелого металла осаждаются на поверхности того или иного детектора, где они и регистрируются после радиоактивного распада. Номер детектора, в котором регистрируется распад, показывает ту температуру, при которой абсорбция молекулы становится энергетически выгодной. Эта температура определяется физико-химической характеристикой изучаемого карбонил-комплекса - энтальпией адсорбции. Ну а сама эта характеристика вещества, в свою очередь, предсказывается химическими расчетами, в которых релятивистские эффекты играют существенную роль. Таким образом, измеряя то, как Sg(CO) 6 , W(CO) 6 и Mo(CO) 6 осаждаются в анализаторе COMPACT, можно проверять теоретико-химические теоретические расчеты и измерять энтальпию адсорбции этих веществ.

Результаты этого исследования показаны на рис. 4. Здесь отложено несколько характеристик в каждой из 32 пар детекторов. Верхний график - это просто распределение температуры вдоль линейки. Средний и нижний графики показывают, собственно, сами экспериментальные данные - распределение зарегистрированных распадов ядер вольфрама-164 (в центре) и сиборгия-265 (внизу) по детекторам. Событий с сиборгием тут, конечно, маловато - за две недели непрерывного облучения мишени интенсивным пучком их всего было зарегистрировано 18 штук. Но тем не менее хорошо видно, что они распределены не равномерно по линейке, а ближе к ее концу, в детекторах с номерами выше 20. Примерно такая же картина и получалась при моделировании этого процесса с энтальпией адсорбции, вычисленной совсем недавно в теоретической работе как раз для этих веществ. Аналогичная картина наблюдается и для соединения с нестабильным изотопом вольфрама и с изотопами молибдена (они на рисунке не показаны): максимум распределений попадает именно туда, куда предсказывают теоретические расчеты. Это совпадение придает дополнительную уверенность в том, что современные методы полностью релятивистского расчета структуры тяжелых атомов адекватно описывают экспериментальные данные.

В завершение полезно взглянуть на это исследование с высоты птичьего полета. Обычно нестабильные сверхтяжелые элементы интересуют физиков ради новых знаний в ядерной физике. Однако раз природа нам позволяет, эти элементы можно использовать и с другой целью - для проверки того, насколько хорошо мы можем предсказать химические свойства таких атомов. Это знание, в свою очередь, нужно нам не само по себе, а как дополнительная проверка всей современной теории расчета электронных структур тяжелых атомов с учетом релятивистских эффектов. А уж отсюда следуют многочисленные применения, от сугубо прикладных исследований до самой настоящей фундаментальной науки . Химия трансактиноидов лишний раз подчеркивает то, насколько сильно связаны друг с другом самые разные области физики и смежных дисциплин.